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Thermonuclear Fusion

Fusion of deuterium and tritium (isotopes of hydrogen)

Collision of ions “fuse” releasing 17.6 MeV, a neutron, and helium

D + T → n(14.1MeV ) + He(3.5MeV )

Only possible when Lawson criteria is fulfilled, i.e,

nT τE > 3× 1021m−3keVs
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What is a Plasma?

At high temperatures needed any gas becomes plasma
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Principle of Magnetic Confinement

Charged particles are confined by magnetic fields

Uniform field: particle moves in helical path

Nonuniform field: particle moves approximately in helical path
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How is the Drift handled?

Handling drift leads to different devices

Tokamak: add electric field to plasma produced by transformer

Stellarator: use more sophisticated geometry

Two main devices for generating fusion energy:

Tokamak Stellarator
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The Stellarator

Stellarator from latin stella (engl. star),

Concept of stellarator by Lyman Spitzer in 1951,

Due to superior performance of tokamaks abandoned in 1960’s,

Return of stellarator (mostly) due to modern computational methods.
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Outlook:

1 Motivation

2 Stellarator Optimization Status Quo

3 Dealing with Uncertainties
Short Introduction to Bayesian Optimization
Risk-Neutral Optimization
Risk-Averse Optimization

4 Conclusion
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What Makes a Good Stellarator?
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Optimization Methods

a) Building Coils and see what happens

b) Coil optimization first

c) Standard Optimization: Two Step Method:

1 Optimize plasma boundary

2 Optimize coils to achieve plasma boundary

Pros:

Learn about interplay of
boundary/parameters

Less numerical expensive
than directly evaluating the
coils

Cons:

There might be no set of coils
which can reproduce the
magnetic field

One needs two optimization
procedures for coils

Silke Glas (Cornell) Stellarator Optimization April 22, 2020 9 / 31



Optimization with STELLOPT

Solve 3D MHD
Equilibrium

(VMEC)
Adjust Plasma

Boundary
Calculate values for
evaluating objective

function

Initialize Targets,
Boundary etc.

Optimizer
STELLOPT: Levenberg-Marquardt
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STELLOPT Approach

Goal: Design Magnetohydrodynamics (MHD) equilibrium

Possible parameters for boundary: C ⊂ Rn

Physics/engineering properties: F : C → Rm

Target vector: F ∗ ∈ Rm

Target function: Minimize χ2 objective over C , i.e.,

χ2(x) =
m∑

k=1

Jk(x)

σ2
k

, Jk(x) = (Fk(x)− F ∗k )2

Solve via Levenberg-Marquardt, genetic algorithms
(avoids gradient information apart from finite differences)
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Challenges

1) Costly and “black box” physics computations

Each step: MHD equilibrium solve, coil design,

Several times per step for finite-difference gradients

2) Managing tradeoffs

How do we choose the weights in the χ2 measure?

Varying the weights does not expose tradeoffs sensibly

3) Dealing with uncertainties

What you simulate 6= what you build!

4) Global search

How to avoid getting stuck in local minima?
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Outlook

Dealing with Uncertainties
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What you simulate 6= what you build!

Errors in coil building process can lead to loss of fusion energy

Need: Method that increases construction tolerances without
compromising performance

Left: W7-X (sketch); right: W7-X (real).
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What are we optimizing?

Single objective optimization:

minimize f (x) s.t. x ∈ Ω ⊂ Rd

Assume

Ω compact (and simple — e.g. a box)

f : Ω→ R, f is expensive to evaluate

We think the true f has some smoothness

Later: constraints, non-smoothness, multi-objective, derivatives, etc
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What are we optimizing?

Single objective optimization:

minimize f (x−U) s.t. x ∈ Ω ⊂ Rd ,U random variable

Assume

Ω compact (and simple — e.g. a box)

f is expensive to evaluate (and maybe noisy)

We think the true f has some smoothness

Later: constraints, non-smoothness, multi-objective, derivatives, etc
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Measures of Uncertainty in this Talk

Setting:

Investor has two investments to choose

What does he choose if he uses:

Risk-Neutral Optimization:

Picks investment with highest return

Risk is not taken into account

Risk-Averse Optimization:

More conservative approach

Prefers lower return with less risk
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Outlook

Short Introduction to Bayesian Optimization
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Surrogate Optimization

Basic Idea: replace expensive f (x) by f̂ (x) using data

Wishlist:

f̂ (x) should be cheap/cheaper to evaluate

f̂ (x) should be able to give measure of uncertainty

Being Bayesian for the rest of the talk, i.e,

Works well for input dimensions ≤ 10
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Gaussian Process (GP)

A Gaussian process (GP) is a distribution over functions, written as:

GP(µ(x), k(x, x′)).

Mean: µ : Rd → R, often zero, constant or low-degree polynomial.

Covariance: k(x, x′) : Rd × Rd → R. Assumed k(x, x′) is PD kernel.

For data points x, y(x) ∼ N (µX ,KXX ), (µX )i = µ(xi ),
(KXX )ij = k(xi , xj ).
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Incorporating Assumptions

Key places to inject assumptions on f :

Kernel choice

Standard choices (e.g., squared exponential, Matérn) work well
... but better choices require less training data
Typically choose based on some belief about smoothness

Mean field

Standard choices are constant or linear
Can bring in other shapes if more is known

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1 Matérn 1/2

Matérn 3/2

Matérn 5/2

Squared exp
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Bayesian Optimization (BO)

BO Iteration 5

Mean

Observations

Uncertainty

Acqusition

BO Iteration 6

Mean

Observations

Uncertainty

Acqusition

New Point

Figure: First building GP from observations (blue). Optimize acquisition function
(magenta) for new sample point (green).

Goal: given simple domain Ω, find the global minimum x∗ ∈ Ω:

f (x∗) ≤ f (x) , ∀x ∈ Ω.

Build a Gaussian process that models f .
Choose next evaluation point by maximizing acquisition function Λ(x).
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Bayesian optimization

Acquisition function must balance exploration and exploitation

Let y∗ is current observed min. Popular acquisition functions:

Probability Improvement (PI):

PI(x) = P(f (x) ≤ y∗) = Φ

(
y∗ − µ(x)

σ(x)

)
.

Expected Improvement (EI):

EI(x) = E[max(y∗ − f (x), 0)]

= (y∗ − µ(x))Φ

(
y∗ − µ(x)

σ(x)

)
+ σ(x)φ

(
y∗ − µ(x)

σ(x)

)
.
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Outlook

Risk-Neutral Optimization
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Risk-Neutral Optimization

Perform well on average under perturbations.

min
x∈Ω

EU [f (x − U)].

Not worried in general about bad perturbations

Solution prefers shallower wide basins

Interested in case when f is a GP
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Recall Standard Bayesian Optimization

Let f ∼ (0, k(x , x ′)), i.e.,

m(x) = 0

k(x , x ′) = φ(‖x − x ′‖)

Observe f at n points

X = {x1, . . . , xn},
fX = {f (x1), . . . , f (xn)}
Posterior is GP with f ∗|fX ∼ (m∗(x), k∗(x , x)) with

m∗(x) =
n∑

i=1

ciφ(‖x − xi‖), ci = [Φ−1
XX fX ]i , dij = [Φ−1

XX ]ij

k∗(x , x ′) = φ(x − x ′)−
N∑

i ,j=1

dijφ(||x − xi ||)φ(||x ′ − xj ||)

Silke Glas (Cornell) Stellarator Optimization April 22, 2020 22 / 31



Computing the Risk-Neutral Optimization function

Computing the expected value yields:

f̄ (x) = EU [f (x − U)] =

∫
R
f ∗(x − u)w(u) du = [f ∗ ∗ w ](x)

Convolution performs linear operation on GP  f̄ ∼ GP(m̄(x), k̄(x , x)) with

m̄(x) := [m∗ ∗ w ](x) =
N∑

i=1

ci φ̄(‖x − xi‖)

=
N∑

i=1

ci

∫
R
φ(‖x − u − xi‖)w(u) du =

N∑
i=1

ci [φ ∗ w ](x)

k̄(x , x ′) := [[k∗ ∗1 w ] ∗2 w ](x , x ′)

=

∫
R,R

k∗(||(x − u)− (x ′ − v)||)w(u)w(v) du dv
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Example - Squared Exponential Kernel

Quantities m̄(x) and k̄(x , x ′) can be calculated analytically for some cases:

No Monte-Carlo needed to evaluate the integral

Feasible for, e.g., squared exponential kernel with hypers α, a

φ(x − x ′) = α exp

(
−(‖x − x ′‖)2

a2

)
and mean-zero gaussian distribution

w(u) =
1√

(2π)n|Σ|
exp

(
−1

2
uT Σ−1u

)
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Risk-Neutral Bayesian Optimization
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Outlook

Risk-Averse Optimization
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Mean-Variance

Mean-Variance penalizes variance as proxy for uncertainty, η ∈ R+

min
x∈Ω

(EU [f (x − U)] + ηVarU [f (x − U)]) .

The objective function w.r.t. f ∗ reads

min
x∈Ω

(
EU [f (x − U)] + η

(
EU [f 2(x − U)]− (EU [f (x − U)])2

))
,

with

f̄ (x) := EU [f (x − U)] =

∫
R
f ∗(x − u)w(u) du,

f̂ (x) := EU [f 2(x − U)] =

∫
R
f ∗(x − u)2w(u) du,

f̄ 2(x) := (EU [f (x − U)])2 =

(∫
R
f ∗(x − u)w(u) du

)2

.
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Computation of Third Part -1

What we want: distribution of f̄ 2(x)

Way to find out:[1]

Re-scale f̄ (x) with
√

k̄(x , x), thus

Y := f̄ (x)/
√
k̄(x , x) ∼ N (λ, 1),

with λ := m̄(x)√
k̄(x ,x)

For the squared variable Y 2, we get
a noncentral χ2 distribution with

1 degree of freedom

noncentrality parameter λ2

Y 2 ∼ NCχ2(1, λ2).

[1]Following A.K. Uhrenholt, B.S. Jensen, Efficient Bayesian Optimization for target vector estimation,

Proceedings of AISTATS, 2019.
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Computation of Third Part -2

But: only want distribution for f̄ 2(x)
 variable transformation

p(f̄ 2(x)) = p(g(f̄ 2(x))) ∗ |g ′(f̄ 2(x))|

 thus

f̄ 2(x) ∼ NCχ2(Y 2|1, λ) ∗ 1

k̄(x , x)
.
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Approximation of the noncentral χ2

Assume X ∼ NCχ2(1, λ2), with 1 DOF, λ2 noncentrality parameter,

CDF of X is approximated by standard normal CDF [2]:

Φ
(√

X − λ
)

This leads to the PDF

φ
(√

X − λ
)( 1

2
√
X

)

[2]D.A.S Fraser, A.C.M. Wong, J. Wu, An approximation for the noncentral chi-squared distribution,

Communications in Statistics - Simulation and Computation, 1998.
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Computation of second part

Seek: distribution of the second part

f̂ (x) := EU [f 2(x − U)] =

∫
R
f ∗(x − u)2w(u) du

follow third part for squared function

 (f ∗(x))2 ∼ NCχ2(1, (λ∗)2) ∗ 1

k∗(x , x)

with λ := m∗(x)√
k∗(x ,x)

Status Quo:

First term is gaussian

Third term is noncentral χ2 times constant

In second term noncentral χ2 is in integral
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Outlook

Conclusion
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Conclusion

Conclusion:

Optimizing stellarators is hard!

Risk-neutral approach implemented

Progress on risk-averse approaches

Representation of mean-variance
Closed-form approximation for VaR
Representation of CVaR

Further work:

Implementing/Evolving measures

Perform risk-neutral approach for stellarator problem

Starting doing multi-objective optimization
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