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Thermonuclear Fusion

e Fusion of deuterium and tritium (isotopes of hydrogen)

@ Collision of ions “fuse” releasing 17.6 MeV, a neutron, and helium
D+ T — n(14.1MeV) + He(3.5MeV)
@ Only possible when Lawson criteria is fulfilled, i.e,
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What is a Plasma?

@ At high temperatures needed any gas becomes plasma
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Principle of Magnetic Confinement

@ Charged particles are confined by magnetic fields
@ Uniform field: particle moves in helical path

@ Nonuniform field: particle moves approximately in helical path

Magnetic field line Charged particle
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How is the Drift handled?

@ Handling drift leads to different devices
@ Tokamak: add electric field to plasma produced by transformer

@ Stellarator: use more sophisticated geometry

Two main devices for generating fusion energy:

Tokamak Stellarator
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The Stellarator

o Stellarator from latin stella (engl. star),
@ Concept of stellarator by Lyman Spitzer in 1951,
@ Due to superior performance of tokamaks abandoned in 1960's,

@ Return of stellarator (mostly) due to modern computational methods.
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Outlook:

@ Motivation
© Stellarator Optimization Status Quo

© Dealing with Uncertainties
@ Short Introduction to Bayesian Optimization
@ Risk-Neutral Optimization
@ Risk-Averse Optimization

@ Conclusion
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What Makes a Good Stellarator?

Outside

Limiting Surfaces
Plasma Boundary

Half-Module
(% of W7-X)

Axis Position
(Triangle)

Inside

O Objects used in Optimization
:| Field Error + Geometric Properties

Q Properties of the Vacuum Field

i? Optimization of Fourier Coefficients

Figure courtesy Jim Lobsien

Quality Criteria
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Optimization Methods

a) Building Coils and see what happens
b) Coil optimization first

c) Standard Optimization: Two Step Method:
@ Optimize plasma boundary

@ Optimize coils to achieve plasma boundary

Pros: Cons:
@ Learn about interplay of @ There might be no set of coils
boundary/parameters which can reproduce the
@ Less numerical expensive magnetic field
than directly evaluating the @ One needs two optimization
coils procedures for coils
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Optimization with STELLOPT

Initialize Targets,
Boundary etc.

Adiust Plasma Solve 3D MHD Calculate values for
éoundar > Equilibrium =3 evaluating objective
y (VMEC) function
Optimizer ¢
STELLOPT: Levenberg-Marquardt
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STELLOPT Approach

Goal: Design Magnetohydrodynamics (MHD) equilibrium
@ Possible parameters for boundary: C C R”
@ Physics/engineering properties: F : C — R™
o Target vector: F* € R™

Target function: Minimize x? objective over C, i.e.,

()= K ) = (R - F)?

Solve via Levenberg-Marquardt, genetic algorithms
(avoids gradient information apart from finite differences)
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Challenges

1) Costly and "black box" physics computations
o Each step: MHD equilibrium solve, coil design,

@ Several times per step for finite-difference gradients

2) Managing tradeoffs
e How do we choose the weights in the x? measure?

@ Varying the weights does not expose tradeoffs sensibly

3) Dealing with uncertainties

@ What you simulate # what you build!

4) Global search

@ How to avoid getting stuck in local minima?
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Outlook

Dealing with Uncertainties
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What you simulate # what you build!

@ Errors in coil building process can lead to loss of fusion energy

@ Need: Method that increases construction tolerances without
compromising performance

Left: W7-X (sketch); right: W7-X (real).
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What are we optimizing?

Single objective optimization:
minimize f(x) s.t. x € Q ¢ RY

Assume
@ Q compact (and simple — e.g. a box)
o f:Q — R, fis expensive to evaluate
@ We think the true f has some smoothness

Later: constraints, non-smoothness, multi-objective, derivatives, etc
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What are we optimizing?

Single objective optimization:
minimize f(x—U) s.t. x € Q € RY, U random variable

Assume
@ Q compact (and simple — e.g. a box)
@ f is expensive to evaluate (and maybe noisy)
@ We think the true f has some smoothness

Later: constraints, non-smoothness, multi-objective, derivatives, etc
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Measures of Uncertainty in this Talk

Setting:
@ Investor has two investments to choose

@ What does he choose if he uses:
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Measures of Uncertainty in this Talk

Setting:
@ Investor has two investments to choose

@ What does he choose if he uses:

Risk-Neutral Optimization:
@ Picks investment with highest return

@ Risk is not taken into account
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Measures of Uncertainty in this Talk

Setting:
@ Investor has two investments to choose

@ What does he choose if he uses:

Risk-Neutral Optimization:
@ Picks investment with highest return

@ Risk is not taken into account

Risk-Averse Optimization:
@ More conservative approach

@ Prefers lower return with less risk
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Outlook

Short Introduction to Bayesian Optimization
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Surrogate Optimization

Basic Idea: replace expensive f(x) by f(x) using data

Wishlist:
e 7(x) should be cheap/cheaper to evaluate

e 7(x) should be able to give measure of uncertainty

Being Bayesian for the rest of the talk, i.e,

@ Works well for input dimensions < 10
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Gaussian Process (GP)

@ A Gaussian process (GP) is a distribution over functions, written as:
GP(u(x), k(x,x')).

o Mean: 1 : RY — R, often zero, constant or low-degree polynomial.
o Covariance: k(x,x'): RY x RY — R. Assumed k(x,x’) is PD kernel.

e For data points x, y(x) ~ N (ux, Kxx), (1x)i = p(x;),
(Kxx)ij = k(xi, ;).
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Incorporating Assumptions

Key places to inject assumptions on f:
@ Kernel choice

o Standard choices (e.g., squared exponential, Matérn) work well
e ... but better choices require less training data
o Typically choose based on some belief about smoothness

@ Mean field

e Standard choices are constant or linear
e Can bring in other shapes if more is known

Matérn 1/2 ||

1 -
—— Matérn 3/2
—— Matérn 5/2
05| —— Squared exp | |
O - —
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Bayesian Optimization (BO)

BO lIteration 5

——Mean

0 Observations .
- = =Uncertainty ‘
----- Acqusition

RS

BO lIteration 6

——Mean
© Observations
- - =Uncertainty
----- Acqusition
* New Point

Figure: First building GP from observations (blue). Optimize acquisition function
(magenta) for new sample point (green).

@ Goal: given simple domain €, find the global minimum x* € Q:

f(x*) < f(x), vx € Q.

@ Build a Gaussian process that models f.

@ Choose next evaluation point by maximizing acquisition function A(x).
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Bayesian optimization

@ Acquisition function must balance exploration and exploitation
@ Let y* is current observed min. Popular acquisition functions:
o Probability Improvement (PI):
PI(x) = P(f(x) < y*) = @ y = ux)y
- o(x)

o Expected Improvement (EI):

El(x) = E[max(y* — f(x),0)]

— (" — () (““”) ; a(x)¢<y*‘“(x)>,

a(x)
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Outlook

Risk-Neutral Optimization
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Risk-Neutral Optimization
Perform well on average under perturbations.

migEU[f(x - U)].

X€E

@ Not worried in general about bad perturbations
@ Solution prefers shallower wide basins

@ Interested in case when f is a GP

— fx) — )
Risk-Neutral
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Recall Standard Bayesian Optimization

Let f ~ (0, k(x,x)), i.e.,
e m(x)=0
o k(x,x") = o(|lx = x')

Observe f at n points
o X ={xqy,...,xn},
o fx ={f(x1),...,f(xn)}
@ Posterior is GP with *|fx ~ (m*(x), k*(x, x)) with

n

m*(x) =) _aollx —xil), = [®xxfxli,  dyj=[Pxxly
i=1

() = =)= 3 dyollx = sl — 1)

ij=1
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Computing the Risk-Neutral Optimization function

Computing the expected value yields:

f(x) =Ey[f(x— V)] = /Rf*(x —u)w(u)du = [f* = w](x)

Convolution performs linear operation on GP ~ f ~ GP(m(x), k(x, x)) with

N

m(x) == [m* * w](x) :Z (IIx = i)

N
—Zc,/gb“x—u—x,”)w Zc,¢>kw]
i=1

k(x,x") = [[k* %1 w] %2 w](x, x")
= [ Kix= 0) = (¢ = lwla)w() du oy
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Example - Squared Exponential Kernel

Quantities m(x) and k(x, x") can be calculated analytically for some cases:

@ No Monte-Carlo needed to evaluate the integral

o Feasible for, e.g., squared exponential kernel with hypers «, a

(HX—X’\)2>

32

d(x — x') = aexp (—
@ and mean-zero gaussian distribution

w(u) = m exp <—;uT21u>
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Risk-Neutral Bayesian Optimization

Bayesian Optimization: Risk-Neutral Probability of Improvement

124
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Outlook

Risk-Averse Optimization
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Mean-Variance

Mean-Variance penalizes variance as proxy for uncertainty, n € R

min (Ey[f (x — U)] + Varu[f(x — V)]

Xe

The objective function w.r.t. f* reads

min (Eo[f (= U]+ (Bu[P(x — V)] = (EBlf(x = U)))°) ) .

with
) = Bulf(x = U] = [ £ (x = upw(u) du,
00 = Bulf(x = U] = [ £ (x = ufw(w) du,
F2(x) = (Bu[f(x — U)])? = (/R F(x — u)w(v) du)2.
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Computation of Third Part -1
o What we want: distribution of £2(x)

Way to find out:!!

@ Re-scale )_‘(x) with \/I?(x,x), thus
Y = f(x)/\/k(x,x) ~ N (A1),

with \ := —m()
k(x,x)

PDF Noncentral 2

@ For the squared variable Y?, we get
a noncentral x2 distribution with

o 1 degree of freedom

e noncentrality parameter \2

Y2~ NCXP(1,0%).

[ Following A.K. Uhrenholt, B.S. Jensen, Efficient Bayesian Optimization for target vector estimation,

Proceedings of AISTATS, 2019.
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Computation of Third Part -2

But: only want distribution for f2(x)
~~ variable transformation

p(F2(x)) = p(g(F?(x))) * &' (F*(x))|

~~ thus

i} 1
F2(x) ~ NCx2(Y2|1,\) * = .
k(x, x)
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Approximation of the noncentral y?

Assume X ~ NCXZ(l,)\Z), with 1 DOF, A2 noncentrality parameter,
e CDF of X is approximated by standard normal CDF [2I:

® (\/)? - )\)
@ This leads to the PDF

6 (vX-») (2%)

109 — CDF chi squared — PDF Chi Squared
—— CDF standard Normal —— PDF Approximation

o B 10 15 20 0 5 10 5 20

PID.A.S Fraser, A.C.M. Wong, J. Wu, An approximation for the noncentral chi-squared distribution,

Communications in Statistics - Simulation and Computation, 1998.
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Computation of second part

Seek: distribution of the second part

F(x) = Ey[f(x — U)] = /]R f*(x — u)?*w(u) du

o follow third part for squared function

= (F(x))? ~ NOXP(L, (X))

k*(x, x)
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Computation of second part

Seek: distribution of the second part

F(x) = Ey[f(x — U)] = /]R f*(x — u)?*w(u) du

o follow third part for squared function

s (F(x))2 ~ 2 )2 4
(F( ~ NOP(L (X)) * s

with \ = ()

k*(x,x)

Status Quo:
o First term is gaussian
@ Third term is noncentral x? times constant

@ In second term noncentral x2 is in integral
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Outlook

Conclusion
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Conclusion

Conclusion:
@ Optimizing stellarators is hard!
@ Risk-neutral approach implemented

@ Progress on risk-averse approaches

o Representation of mean-variance
o Closed-form approximation for VaR
o Representation of CVaR
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Conclusion

Conclusion:
@ Optimizing stellarators is hard!
@ Risk-neutral approach implemented

@ Progress on risk-averse approaches

o Representation of mean-variance
o Closed-form approximation for VaR
o Representation of CVaR

Further work:
e Implementing/Evolving measures
@ Perform risk-neutral approach for stellarator problem

@ Starting doing multi-objective optimization
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