

Stellarator Optimization

David Bindel, Silke Glas, Ariel Kellison, Curran Muhlberger, Misha Padidar

Cornell University

smg374@cornell.edu

April 22, 2020

- (E

Thermonuclear Fusion

- Fusion of deuterium and tritium (isotopes of hydrogen)
- Collision of ions "fuse" releasing 17.6 MeV, a neutron, and helium

$$D + T \rightarrow n(14.1 MeV) + He(3.5 MeV)$$

• Only possible when Lawson criteria is fulfilled, i.e,

$$nT\tau_E > 3 imes 10^2 1 m^{-3} keVs$$

What is a Plasma?

• At high temperatures needed any gas becomes plasma

< □ > < 同 > < 回 > < 回 > < 回 >

Principle of Magnetic Confinement

- Charged particles are confined by magnetic fields
- Uniform field: particle moves in helical path
- Nonuniform field: particle moves approximately in helical path

How is the Drift handled?

- Handling drift leads to different devices
- Tokamak: add electric field to plasma produced by transformer
- Stellarator: use more sophisticated geometry

Two main devices for generating fusion energy:

Tokamak

Stellarator

- **→** ∃ →

The Stellarator

- Stellarator from latin stella (engl. star),
- Concept of stellarator by Lyman Spitzer in 1951,
- Due to superior performance of tokamaks abandoned in 1960's,
- Return of stellarator (mostly) due to modern computational methods.

Outlook:

Motivation

Oealing with Uncertainties

- Short Introduction to Bayesian Optimization
- Risk-Neutral Optimization
- Risk-Averse Optimization

4 Conclusion

< (日) × (日) × (1)

What Makes a Good Stellarator?

Optimization Methods

- a) Building Coils and see what happens
- b) Coil optimization first
- c) Standard Optimization: Two Step Method:
 - Optimize plasma boundary
 - Optimize coils to achieve plasma boundary

Pros:

- Learn about interplay of boundary/parameters
- Less numerical expensive than directly evaluating the coils

Cons:

- There might be no set of coils which can reproduce the magnetic field
- One needs two optimization procedures for coils

< □ > < □ > < □ > < □ > < □ > < □ >

Optimization with STELLOPT

Silke Glas (Cornell)

April 22, 2020 10 / 31

3

イロト イポト イヨト イヨト

STELLOPT Approach

Goal: Design Magnetohydrodynamics (MHD) equilibrium

- Possible parameters for boundary: $C \subset \mathbb{R}^n$
- Physics/engineering properties: $F: C \to \mathbb{R}^m$
- Target vector: $F^* \in \mathbb{R}^m$

Target function: Minimize χ^2 objective over *C*, i.e.,

$$\chi^2(x) = \sum_{k=1}^m \frac{J_k(x)}{\sigma_k^2}, \quad J_k(x) = (F_k(x) - F_k^*)^2$$

Solve via Levenberg-Marquardt, genetic algorithms (avoids gradient information apart from finite differences)

Challenges

1) Costly and "black box" physics computations

- Each step: MHD equilibrium solve, coil design,
- Several times per step for finite-difference gradients

2) Managing tradeoffs

- How do we choose the weights in the χ^2 measure?
- Varying the weights does not expose tradeoffs sensibly

3) Dealing with uncertainties

• What you simulate \neq what you build!

4) Global search

• How to avoid getting stuck in local minima?

< 日 > < 同 > < 三 > < 三 >

Dealing with Uncertainties

Silke Glas (Cornell)

Stellarator Optimization

April 22, 2020 12 / 31

< □ > < 同 > < 回 > < 回 > < 回 >

æ

What you simulate \neq what you build!

- Errors in coil building process can lead to loss of fusion energy
- Need: Method that increases construction tolerances without compromising performance

Left: W7-X (sketch); right: W7-X (real).

Single objective optimization:

minimize
$$f(x)$$
 s.t. $x \in \Omega \subset \mathbb{R}^d$

Assume

- Ω compact (and simple e.g. a box)
- $f:\Omega \to \mathbb{R}$, f is expensive to evaluate
- We think the true f has some smoothness

Later: constraints, non-smoothness, multi-objective, derivatives, etc

Single objective optimization:

minimize f(x-U) s.t. $x \in \Omega \subset \mathbb{R}^d$, U random variable

Assume

- Ω compact (and simple e.g. a box)
- f is expensive to evaluate (and maybe noisy)
- We think the true f has some smoothness

Later: constraints, non-smoothness, multi-objective, derivatives, etc

Measures of Uncertainty in this Talk

Setting:

- Investor has two investments to choose
- What does he choose if he uses:

э

(日)

Measures of Uncertainty in this Talk

Setting:

- Investor has two investments to choose
- What does he choose if he uses:

Risk-Neutral Optimization:

- Picks investment with highest return
- Risk is not taken into account

Measures of Uncertainty in this Talk

Setting:

- Investor has two investments to choose
- What does he choose if he uses:

Risk-Neutral Optimization:

- Picks investment with highest return
- Risk is not taken into account

Risk-Averse Optimization:

- More conservative approach
- Prefers lower return with less risk

Short Introduction to Bayesian Optimization

Silke Glas (Cornell)

Stellarator Optimization

April 22, 2020 15 / 31

3

< □ > < 同 > < 回 > < 回 > < 回 >

Basic Idea: replace expensive f(x) by $\hat{f}(x)$ using data

Wishlist:

- $\hat{f}(x)$ should be cheap/cheaper to evaluate
- $\hat{f}(x)$ should be able to give measure of uncertainty

Being Bayesian for the rest of the talk, i.e,

• Works well for input dimensions ≤ 10

Gaussian Process (GP)

• A Gaussian process (GP) is a distribution over functions, written as:

$$\mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')).$$

- Mean: $\mu : \mathbb{R}^d \to \mathbb{R}$, often zero, constant or low-degree polynomial.
- Covariance: $k(\mathbf{x}, \mathbf{x}') : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$. Assumed $k(\mathbf{x}, \mathbf{x}')$ is PD kernel.
- For data points \mathbf{x} , $y(\mathbf{x}) \sim \mathcal{N}(\mu_X, K_{XX})$, $(\mu_X)_i = \mu(\mathbf{x}_i)$, $(K_{XX})_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$.

Silke Glas (Cornell)

Incorporating Assumptions

Key places to inject assumptions on f:

- Kernel choice
 - Standard choices (e.g., squared exponential, Matérn) work well
 - ... but better choices require less training data
 - Typically choose based on some belief about smoothness
- Mean field
 - Standard choices are constant or linear
 - Can bring in other shapes if more is known

Bayesian Optimization (BO)

Figure: First building GP from observations (blue). Optimize acquisition function (magenta) for new sample point (green).

• Goal: given simple domain Ω , find the global minimum $\mathbf{x}^* \in \Omega$:

$$f(\mathbf{x}^*) \leq f(\mathbf{x}) , \ \forall \mathbf{x} \in \Omega.$$

- Build a Gaussian process that models f.
- Choose next evaluation point by maximizing acquisition function $\Lambda(\mathbf{x})_{,\circ}$

Silke Glas (Cornell)

Bayesian optimization

- Acquisition function must balance exploration and exploitation
- Let y^* is current observed min. Popular acquisition functions:
 - Probability Improvement (PI):

$$\mathsf{PI}(\mathbf{x}) = \mathsf{P}(f(x) \le y^*) = \Phi\left(\frac{y^* - \mu(\mathbf{x})}{\sigma(\mathbf{x})}\right).$$

• Expected Improvement (EI):

$$\begin{aligned} \mathsf{EI}(\mathbf{x}) &= \mathbb{E}[\max(y^* - f(x), 0)] \\ &= (y^* - \mu(\mathbf{x})) \Phi\left(\frac{y^* - \mu(\mathbf{x})}{\sigma(\mathbf{x})}\right) + \sigma(\mathbf{x}) \phi\left(\frac{y^* - \mu(\mathbf{x})}{\sigma(\mathbf{x})}\right) \end{aligned}$$

Silke Glas (Cornell)

April 22, 2020 20 / 31

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Risk-Neutral Optimization

Silke Glas (Cornell)

Stellarator Optimization

April 22, 2020 20 / 31

イロト イヨト イヨト イヨト

æ

Risk-Neutral Optimization

Perform well on average under perturbations.

 $\min_{x\in\Omega}\mathbb{E}_{\boldsymbol{U}}[f(x-\boldsymbol{U})].$

- Not worried in general about bad perturbations
- Solution prefers shallower wide basins
- Interested in case when f is a GP

Recall Standard Bayesian Optimization

Let $f \sim (0, k(x, x'))$, i.e., • m(x) = 0• $k(x, x') = \phi(||x - x'||)$

Observe f at n points

- $X = \{x_1, ..., x_n\},$
- $f_X = \{f(x_1), \ldots, f(x_n)\}$
- Posterior is GP with $f^*|f_X \sim (m^*(x), k^*(x, x))$ with

$$m^{*}(x) = \sum_{i=1}^{n} c_{i}\phi(||x - x_{i}||), \qquad c_{i} = [\Phi_{XX}^{-1}f_{X}]_{i}, \quad d_{ij} = [\Phi_{XX}^{-1}]_{ij}$$
$$k^{*}(x, x') = \phi(x - x') - \sum_{i,j=1}^{N} d_{ij}\phi(||x - x_{i}||)\phi(||x' - x_{j}||)$$

Silke Glas (Cornell)

April 22, 2020 22 / 31

イロト イポト イヨト イヨト 二日

Computing the Risk-Neutral Optimization function

Computing the expected value yields:

$$\overline{f}(x) = \mathbb{E}_{\boldsymbol{U}}[f(x-\boldsymbol{U})] = \int_{\mathbb{R}} f^*(x-\boldsymbol{u})w(\boldsymbol{u})\,d\boldsymbol{u} = [f^**w](x)$$

Convolution performs linear operation on GP $\rightsquigarrow \bar{f} \sim GP(\bar{m}(x), \bar{k}(x, x))$ with

$$\bar{m}(x) := [m^* * w](x) = \sum_{i=1}^{N} c_i \bar{\phi}(||x - x_i||)$$

$$= \sum_{i=1}^{N} c_i \int_{\mathbb{R}} \phi(||x - u - x_i||) w(u) \, du = \sum_{i=1}^{N} c_i [\phi * w](x)$$

$$\bar{k}(x, x') := [[k^* *_1 w] *_2 w](x, x')$$

$$= \int_{\mathbb{R}, \mathbb{R}} k^* (||(x - u) - (x' - v)||) w(u) w(v) \, du \, dv$$

Silke Glas (Cornell)

April 22, 2020 23 / 31

< □ > < 同 > < 回 > < 回 > < 回 >

Example - Squared Exponential Kernel

Quantities $\bar{m}(x)$ and $\bar{k}(x, x')$ can be calculated analytically for some cases:

- No Monte-Carlo needed to evaluate the integral
- \bullet Feasible for, e.g., squared exponential kernel with hypers α,a

$$\phi(x - x') = \alpha \exp\left(-\frac{(\|x - x'\|)^2}{a^2}\right)$$

• and mean-zero gaussian distribution

$$w(\boldsymbol{u}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2} \boldsymbol{u}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{u}\right)$$

Silke Glas (Cornell)

Risk-Neutral Bayesian Optimization

Silke Glas (Cornell)

April 22, 2020 25 / 31

э

Risk-Averse Optimization

Silke Glas (Cornell)

Stellarator Optimization

April 22, 2020 25 / 31

3

< □ > < □ > < □ > < □ > < □ >

Mean-Variance

Mean-Variance penalizes variance as proxy for uncertainty, $\eta \in \mathbb{R}^+$

$$\min_{x\in\Omega}\left(\mathbb{E}_{\boldsymbol{U}}[f(x-\boldsymbol{U})]+\eta \operatorname{Var}_{\boldsymbol{U}}[f(x-\boldsymbol{U})]\right).$$

The objective function w.r.t. f^* reads

$$\min_{x\in\Omega}\left(\mathbb{E}_{\boldsymbol{U}}[f(x-\boldsymbol{U})]+\eta\left(\mathbb{E}_{\boldsymbol{U}}[f^2(x-\boldsymbol{U})]-(\mathbb{E}_{\boldsymbol{U}}[f(x-\boldsymbol{U})])^2\right)\right),$$

with

$$\overline{f}(x) := \mathbb{E}_{\boldsymbol{U}}[f(x-\boldsymbol{U})] = \int_{\mathbb{R}} f^*(x-\boldsymbol{u})w(\boldsymbol{u})\,d\boldsymbol{u},$$
$$\widehat{f}(x) := \mathbb{E}_{\boldsymbol{U}}[f^2(x-\boldsymbol{U})] = \int_{\mathbb{R}} f^*(x-\boldsymbol{u})^2w(\boldsymbol{u})\,d\boldsymbol{u},$$
$$\overline{f}^2(x) := \left(\mathbb{E}_{\boldsymbol{U}}[f(x-\boldsymbol{U})]\right)^2 = \left(\int_{\mathbb{R}} f^*(x-\boldsymbol{u})w(\boldsymbol{u})\,d\boldsymbol{u}\right)^2.$$

Silke Glas (Cornell)

April 22, 2020 26 / 31

3

< □ > < 同 > < 回 > < 回 > < 回 >

Computation of Third Part -1

• What we want: distribution of $\bar{f}^2(x)$

Way to find $\operatorname{out:}^{[1]}$

• Re-scale $\overline{f}(x)$ with $\sqrt{\overline{k}(x,x)}$, thus

$$\mathbf{Y} := \bar{f}(x)/\sqrt{\bar{k}(x,x)} \sim \mathcal{N}(\lambda,1),$$

with $\lambda := \frac{\bar{m}(x)}{\sqrt{\bar{k}(x,x)}}$

• For the squared variable Y^2 , we get a noncentral χ^2 distribution with

- 1 degree of freedom
- noncentrality parameter λ^2

$$\mathbf{Y}^2 \sim NC\chi^2(1,\lambda^2)$$

^[1]Following A.K. Uhrenholt, B.S. Jensen, *Efficient Bayesian Optimization for target vector estimation*, Proceedings of AISTATS, 2019.

Silke Glas (Cornell)

April 22, 2020 27 / 31

But: only want distribution for $\bar{f}^2(x)$ \rightsquigarrow variable transformation

$$p(\bar{f}^2(x)) = p(g(\bar{f}^2(x))) * |g'(\bar{f}^2(x))|$$

 \rightsquigarrow thus

$$\overline{f}^2(x) \sim NC\chi^2(\mathbf{Y}^2|1,\lambda) * \frac{1}{\overline{k}(x,x)}.$$

Silke Glas (Cornell)

3

< □ > < 同 > < 回 > < 回 > < 回 >

Approximation of the noncentral χ^2

Assume $X \sim NC\chi^2(1, \lambda^2)$, with 1 DOF, λ^2 noncentrality parameter, • CDF of X is approximated by standard normal CDF ^[2]:

$$\Phi\left(\sqrt{\mathbf{X}}-\lambda\right)$$

This leads to the PDF

^[2]D.A.S Fraser, A.C.M. Wong, J. Wu, *An approximation for the noncentral chi-squared distribution*, Communications in Statistics - Simulation and Computation, 1998.

Silke Glas (Cornell)	Stellarator Optimization	April 22, 2020	29/31
----------------------	--------------------------	----------------	-------

Computation of second part

Seek: distribution of the second part

$$\hat{f}(x) := \mathbb{E}_{\boldsymbol{U}}[f^2(x-\boldsymbol{U})] = \int_{\mathbb{R}} f^*(x-\boldsymbol{u})^2 w(\boldsymbol{u}) \, d\boldsymbol{u}$$

• follow third part for squared function

$$\rightsquigarrow (f^*(x))^2 \sim NC\chi^2(1,(\lambda^*)^2) * \frac{1}{k^*(x,x)}$$

with $\lambda := \frac{m^*(x)}{\sqrt{k^*(x,x)}}$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Computation of second part

Seek: distribution of the second part

$$\hat{f}(x) := \mathbb{E}_{\boldsymbol{U}}[f^2(x-\boldsymbol{U})] = \int_{\mathbb{R}} f^*(x-\boldsymbol{u})^2 w(\boldsymbol{u}) \, d\boldsymbol{u}$$

• follow third part for squared function

$$\rightsquigarrow (f^*(x))^2 \sim NC\chi^2(1,(\lambda^*)^2) * \frac{1}{k^*(x,x)}$$

with $\lambda := \frac{m^*(x)}{\sqrt{k^*(x,x)}}$

Status Quo:

- First term is gaussian
- Third term is noncentral χ^2 times constant
- In second term noncentral χ^2 is in integral

Silke Glas (Cornell)

Outlook

Conclusion

Silke Glas (Cornell)

Stellarator Optimization

April 22, 2020 30 / 31

3

<ロト <問ト < 国ト < 国ト

Conclusion

Conclusion:

- Optimizing stellarators is hard!
- Risk-neutral approach implemented
- Progress on risk-averse approaches
 - Representation of mean-variance
 - Closed-form approximation for VaR
 - Representation of CVaR

- 4 ∃ ▶

Conclusion

Conclusion:

- Optimizing stellarators is hard!
- Risk-neutral approach implemented
- Progress on risk-averse approaches
 - Representation of mean-variance
 - Closed-form approximation for VaR
 - Representation of CVaR

Further work:

- Implementing/Evolving measures
- Perform risk-neutral approach for stellarator problem
- Starting doing multi-objective optimization